Categories: Science

Google Maps using DeepMind AI to predict your arrival time

<p id="content">As people traverse over 1 billion km with help from Google Maps in more than 220 countries, the company is using artificial intelligence (AI) machine learning (ML) models to predict whether the traffic along your route is heavy or light, an estimated travel time, and the estimated time of arrival (ETA).

Google has partnered with DeepMind, an Alphabet AI research lab, to improve the accuracy of its traffic prediction capabilities.

"Our ETA predictions already have a very high accuracy bar – in fact, we see that our predictions have been consistently accurate for over 97 per cent of trips," said Johann Lau, Product Manager, Google Maps.

By partnering with DeepMind, Google has been able to cut the percentage of inaccurate ETAs even further by using an ML architecture known as Graph Neural Networks.

"This technique is what enables Google Maps to better predict whether or not you'll be affected by a slowdown that may not have even started yet," Lau said in a statement on Thursday.

To predict what traffic will look like in the near future, Google Maps analyzes historical traffic patterns for roads over time.

"We then combine this database of historical traffic patterns with live traffic conditions, using machine learning to generate predictions based on both sets of data," Lau said.

Since the start of the Covid-19 pandemic, traffic patterns around the globe have shifted dramatically.

"We saw up to a 50 per cent decrease in worldwide traffic when lockdowns started in early 2020," Lau informed.

To account for this sudden change, Google has updated its models to become more agile — automatically prioritizing historical traffic patterns from the last two to four weeks and deprioritizing patterns from any time before that.

The predictive traffic models are also a key part of how Google Maps determines driving routes.

"If we predict that traffic is likely to become heavy in one direction, we'll automatically find you a lower-traffic alternative. We also look at a number of other factors, like road quality," Google said.

Two other sources of information are important to making sure Google recommends the best routes — authoritative data from local governments and real-time feedback from users.

Authoritative data lets Google Maps know about speed limits, tolls, or if certain roads are restricted due to things like construction or Covid-19.

"And incident reports from drivers let Google Maps quickly show if a road or lane is closed, if there's construction nearby, or if there's a disabled vehicle or an object on the road," Google added.

</p>.

IANS

Recent Posts

Outdated infrastructure and transformer failures worsen electricity shortages in PoGB

The region of Pakistan-occupied Gilgit-Baltistan (PoGB) is enduring an escalating electricity crisis that continues to…

8 minutes ago

Uyghur educational activist dies in custody of Chinese authorities

An Uyghur intellectual and education advocate, who was detained the night before his daughter's wedding…

3 hours ago

Create data-rich platform to benefit investigation officers: Amit Shah to NCRB

Union Home Minister Amit Shah has instructed the National Crime Records Bureau (NCRB) to develop…

3 hours ago

Brazil:163 workers rescued from “slave” like conditions from Chinese EV company BYD

Brazilian authorities have rescued 163 workers from conditions similar to "slavery" at a construction site…

4 hours ago

Water crisis worsens in PoJK as natural springs dry up

The water crisis in Pakistan-occupied Jammu and Kashmir (PoJK) has reached alarming levels as natural…

4 hours ago

UK House of Lords members express concern over China’s human rights violations in Tibet

On the 40th anniversary of the Sino-British Joint Declaration, members of the UK House of…

4 hours ago